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Abstract 

Missleering of a particle beam at injection into a circular accelerator 
produces coherent betatron osciUations. The beam position monitor 
system in the A&proton Source at Fermitab can measure the beam 
position on each turn around the ring during these oscillations. From 
the amplitude and phase oftbe oscillations, correctionr to the beamline 
steering are calculated to remove the oscillationr. The analysis includes 
the case where the horizontal and vertical tunes are quite strongly 
coupled. This technique has proved to be valuable both in operation 
of the Fermilab CoUider and 8s an analytical tool. 

Introduction 

At the Fermitab Collider one of the steps in preparing for a transfer of 
s&protons from the Accumulator is to tune the beamline by injecting 
8.GeV protons from the Main Ring backward into the Accumulator’. 
The final step in steering the beam is to minimize the coherent betatron 
orciUations. Without assistance this is often a difficult and tedious 
process. The pressure to do the job quickly is severe, since during this 
time we are neither able to run the collider experiments or to stack 
more antiprotons, yet it must be done weU to avoid dilution of the 
antiproton emittance during the transfer. To assist in the tuning we 
how devcloped a system which autmrw.tw the process for injection into 
either of the rings of the Fermilab Antiproton Sowce from any of the 
four beamlines. 

Determining the corrections to the beamline may be broken into 
two major tasks: to measure the injection error with sufiicient detail 
to allow correction and to calculate the necessary changes to cUminate 
that error, In the conventional view we need to correct both the po- 
sition and angle at injection, so in principle we need to measure two 
quantities and adjust two beamtine elements (for each plane). 

The injection error could be determined by measuring the beam 
position on the tint turn at two lacationr separated by about r/Z in 
phase advance. We choose instead to measure the beam position at a 
single location on many ~uccesniw turns. Making adjustments based 
o,, the oscUlarion, has the advantage ofletting us work on exactly the 
property that we are trying to minimize. Using multiple turns allows us 
to improve the prechion of the measurement by, effectively, averaging 
over many measurements to obtain two parameters. Further, by using 
a dngle detector, WC remove aU queationa ofcrosa.caUbration between 
two detectors. 

We describe the orcillationr we are trying to correct with two param- 
eters, the phase and amplitude. From these numbers and the lattice 
we calculate the changes to two bending elements which wiU eliminate 
the oscillations. 

Theory 

We consider the two-dimenrional space of aU simple injection oscil- 
lations in one plane. The ideal is a point with zero amplitude. Any 
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finite amplitude oscillation will have a phase. The amplitudr and phase 
characterize the arcillation. 

If we start with no oscillation and turn on LL single trim in the injec- 
tion beam line, we induce an oscillation. The phase of the oscillation 
depends only on the phase advance from the trim to the measurement 
position. The amplitude of the osciUation depends on the 8ize of the 
bend in the trim and the relative lattice functions at the two points. 
A si:,~glc bipolar trim CM move the oscittation vector from the en- 
ter in either direction along a straight line. A second trim, placed at 
some other phase (module r) relative to the detector, wiU produce 
oscillations that lie along a straight line at a different angle. 

Figure I: The oscillation vector mowe along two different straight Liner 
as two different trim magnets are varied. 

Now we adjust two trims. Aswming a Linear machine, the position of 
the beam at the detector on each turn is the linear sum of the changes 
induced by each of our two trims. We can find the resultant oscillation 
on our plot by taking the vector sum of the two separate oscillations. 

The summing process can be reversed. An arbitrary oscillation YCL- 
tar can be decomposed into the linear sum of two vectors, with the two 
vectors parallel to the axes detincd by the two trims of interest. If we 
start with the beam oscillating, we can calculate the magnitude of the 
correction necessary from each trim in order to produce an oscillation 
with wiU exactly cancel the initial oscillation in the ring. 

This graphic picture of the trimming explains well what can allo be 
understood in other waya. The mast important thing to notice is the 
problem you face if the two trims you are attempting to we are close 
together in phase and the error oscillation you want to correct is far 
away from them in phase. Although you can decompose the error into 
components pardel to the trims, you arc Likely to run out of range 
on your power supplies before attaining the desired correction and you 
may not hew enough aperture in the beam line between the two trima 
to accommodate the devistionr. 

We can also understand better the traditional tuning procenr. Given 
two knobs asociated with two trims we traditionally use them alter- 
nately to minimize the amplitude of the oscUlationa, iterating until we 
are satisfied or bored or tired. If the trims are orthogonal, the ideal, 
we follow the first path. First we optimize with one trim, then the 
other, and WC are done. It takes a while to tind the minimum asciUs- 
tion amplitude ar a function of each trim, requiring measurements at 
many points along the line. This is rspe&Uy true of the first trim, 
rime it is Likely to have a fairly ahallow minimum. If the two trims 
we not orthogonal, an iterative process must be used, only slowly 
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converging. The paramount importance 01 establishing trims, or com- 
binations of trims, that we orthogonal is thus vividly demonstrated. 
By contrast, the decomposition of a single measurement can predict 
the correct settings when the available two-dimenrional informslion is 
used. Additionally, the placement of trims is less critical. 

Measurement of Oscillations 

The hardware of the Beam Position Monitor (BPM) system for the 
Antiproton Source has been described in detail elrewhere’. For this 
meawrement we use the section of the electronics which detects the 
53 MHz component of the beam (due to the RF buckets) and which is 
capable of logging the beam position at one detector on each turn of the 
beam around the ring. This is commonly known as the turn-by-turn 
(TBT) system. 

The goal of the data analysis is to extract an amplitude and phase 
for the oscillations. A necesary byproduct is the frequency. which also 
gives the tune of the machine. 

A Fast Fourier Transform 

The lint stage of the analysis is a Fast Fourier Transform (FFT) of 
the position data. The code derives from that given in Reference 3. 
A simple peak search for the maximum amplitude gives the fractional 
part of the tune, q, to within l/N where N is the number of turns. A 
simultaneous search for the second-highest local maximum attempts 
to find the frequency of oscillations coupling in from the other plane. 
At least some of the additional information that we extract using the 
techniques described below could probably be obtained by a more so- 
phisticated application of FFT theory, but we chore to ure the tools 
with which we were familiar. 

Fitting Uncoupled Oscillations 

We can fit the simple oscillations to a sine wave using a least squares 
fit. For a given fied frequency the problem is a linear least squares fit. 
We find the best frequency by wiving the problem for a few different 
frequencier near the frequency determined by the FFT. 

We take i to be the turn number, ranging from 0 to N 1; Xi 
to be the measured position on turn i; and z(i) to be the position 
calculated from a pure sine wave. We assume that all positions are 
measured equally well, since the detector and electronics are identical 
for alI measurements. The quantity to be minimized is then 

N-1 
D’ = C (Xi - z(i))’ (1) 

i=o 

and the best lit is obtained when all the partial derivatives of D’ with 
respect to each parameter of z(i) are equal to zero. 

If we ure the functional form 

z(i) = Cl rin2rqi + C2 cas2aqi (2) 

and keep q fired, then we can quickly take the partial derivatives of 
D’ with respect to the parameters Cl and C,, equate the derivatives 
to zero, and solve the two linear equations for the two unknown pw 
rameter,. We ah calculate D’ for those values of C, and C,. 

For a given mearurement data set the quantity D’ is only a function 
of p. We calculate D’ for q = (IFFT, the tune obtained from the FFT; 
far q = ~F.V - I/N; and for q = ~,VFT + l/N. l/N is the granularity 
of the measurement of ~FFT and is thus an appropriate range. We 
assume that the dependence of D’ on q is approximately 

D’(q) = D’(m) t +(d(q - d’ 2 (3) 

for small variations of q from qo, the ‘best’ value. Having evaluated D’ 
for three values of q, WC may solve for q. (and, if we wanted to, Dl(q,) 

and Da”(q,,)), Using our new value pb, we solve one last time for CI 
and C,. To convert C, and Ca into the amplitude and phase that we 
desire, we equate the two expressions 

*(i) = Ct rinZ*qi + C2 cos Znqi 
= Amplitude ain (2rqi + phase) 

and require them to be equal for aU values of i. 

(4) 
(5) 

Fitting Coupled Oscillations 

The previous analysis assumes that the effect ofcoupling between the 
horizontal and vertical tunes may be neglected. In the Accumulator, 
where we run very close to the qs = qy line and with the tunes coupled 
quite strongly on the injection/extraction orbit, this is not a reasonable 
approximation. The Debuncher, as well, suffera from coupling in some 
modes of operation. We are therefore led to a more complete analysis 
which includes the effects of coupling. 

The basic principle remains the wane as with the uncoupled case. 
We treat the two planes separately. The peak search of the amplitude 
spectrum from the FFT Fonda the two highest local maxima. A linear 
least-squares fit to two sines waves is performed using the two frequen- 
cies obtained from the FFT. The frequencies may be refined by seeking 
better fits to the data with different frequencies. 

We write 

z(i) = A, ainZrq,i + El cosZ+rqli + AX sin2nqli + B, coa2rqti (6) 

for the oscillations. The partial derivatives of D’ are set to zero to 
produce few linear equations in four unknowns. The two amplitudes 
and phase, BIG calculated aa they were for the uncoupled care. 
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Figure 2: The rum of two sinewaveo is fit to the strongly coupled 
oscillations. The heavy dots are measured points on successive turns; 
the light line is the fit to the data. 

The frequencies determined from the FFT are generally sufficiently 
precise to allow us to use the amplitude and phase from the linear 
fits obtained with the FFT frequencies. To improve the frequency 
(tune) values beyond the precision offered by the FFT, we need to 
do a two.dimensional non-linear fit. The FFT values provide a good 
starting point for the frequency fit. We have adapted the subroutine 
MIGRAD, a variable metric gradient method from the CERN fitting 
package MINUIT’ for the fit. 

Calculation of Corrections 

We we, of course, the standard Cowant-Snyder notation of bets 
functions and phase advances to describe the motion of the beam in 
the rings. This notation may be extended to a beamline which joins a 
ring by propagating the parameters in the ring through the magnetic 
elements up (or down) the beamline. In this notation a bend 68 in the 
beam tine at a point A will propagate down the line and around the 
ring to point I as a change in the displacement. 

6=. = 6@.4~ZZsin(*~ -*A) (‘1 
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The arciUation at one measurement point on IUCC~SI~YP turns is then 

zi = 6O~~sin($, + ZnQi - ti.4) (8) 
= Asin2*gi+$ (9) 

Canceling oscillations with two trims 

So, starting from perfect injection, each trim will induce an orcilla- 
tion or fried phase and varying amplitude in the ring as its setting is 
changed. To correct for an etinting oscillation we need only decam- 
pose the error oscillation vector into its components parallel to two 
trim oscillation vectors and set the trims to cancel. 

We cd the trims A and B. We call the oscillation vectors O-A, &,, 
and O&,,,. The condition for cancelling the error oscillations is then 
simply written. 

0; + 0-B + o.,,. = ci (10) 
To actually calculate we separately set two orthogonal components of 
the vectors. 

0 = Ari”(*“,,nr-*l)+Urin(*,,,,~*o)+Csirl~ (It) 

0 = ACOS(4BFM ti.4) t Bco.(JloPnr - tie) + Cc-4 (12) 

There are easily solved for the trim strengths A and B and simplified 
by combining products of sine9 and co&es. 

A = -Csin(d2ww - rls - 4) 
Sin(+B -*A) (13) 

('4) 

Remembering that the position oscillations arc proportional to the in- 
variant oscillation size and fi and the effect of a trim is also prupor- 
tional to fl, we can subrtitute back to get trim bends as a function 
of oscillation amplitude. 

de, = _ Amplitude sin (ILBPM - $6 ti) 
vJizGi5 sin (lls - *A) 

Amplitude sin (QBPM - $A - 6) 
68L7 = v45iiz sin(vb - tJQ.4) 

(15) 

(16) 

We note that there equations confirm several intuitive notionr: I) A 
trim located at a high 0 location does not need to be run as hard as 
one at low beta. 2) We achieve better precision (for a fixed position 
resolution) by using a BPM at high 0. .?a) Trims that are orthogonal 
to each other in phase advance (mod& I) work best, because they 
minimize the bends needed Iron, the trims. 3b) Trims that are near to 
each other in phase advance (mod& x) require more strength. 4) If 
the phase error matches the location of one trim. then the other trim 
is not needed. 

Reducing oscillations with one trim 

The technique of the previous section may also be applied to the 
problem of minimizing oscillations when only one trim is available. 
The the residual oscillation may be written as the rum ol the initial 
oscillation plus the trim oscillation. 

- - 
Rcsihusl = 0~ + O.,.,, (“1 

We t&e the square of the amplitude of the residual, in the invariant 
tits of the previous section; differentiate with respect to the trim 
amplitude A; set the derivative equal to r,ero to find the minimum 
residual; and solve for A. 

R” = A’ + C’ + ZAC em ($rrpr, - tin - .$) (W 
1 

EL= 
a.4 

ZA + 2Cros ($BPM - $.A - 6) = 0 (19) 
A = -C COI(~BPM - 11~ - +) (20) 

WC then slip in our &7’s to return to unita of trim bends and BPM 
Lm”itio”“. 

Implementation 

The data acquisition and data reduction has been described above. 
The PDP-11 “console” which the accelerator operator user offers a 
color text screen with a keyboard and track-ball for most user inter- 
action. A color graphics screen is in the adjacent rack. Our system 
consists of two programa communicating with each other using RSX- 
IlM system utilities. One program is responsible for data acquisition, 
lilting the oscillations, and display of the data and tits. The other 
program handles operator interaction (including control of the iormer 
program), monitors the statw of the trim elements, and calculatea 
and sends new settings to the trim elementr based on the measured 
oscillations. 

The system has been in active uric since the start of the 1988-1989 
Collider run at Fermilab in June of 1988. The operators fmd that 
tuning to remove the injection oscillations now takes only a few minutes 
whereas in the 1987 Collider run the process often took an hour. At 
the same time the oscillationr are also reduced to a level that was only 
dredmed of in ,987. 

We have lound that calculations of corrections based entirely on 
calculated lattice parameters and trim magnet strength measurements 
are not perfect. The relative phases and amplitudes, erpecially in the 
beam-line, can be improved signiticenty by measuring the orcillationr 
as a function of trim setting. The source al the errors has not yet been 
irolated. 

Conclusions 

Treating osdations as vectors to he summed or decomposed is a 
powerful and ellective technique for correcting unwanted coherent in- 
jection oscillations. Unstable elements can he identitified by looking 
at the phase alpulse-to-pulse variations. This measurement technique 
could be exploited to measure lattice parameter8 along a beam line 
and around a ring. Simultaneous treatment of both planes in the anal- 
ysis of coupled oscillations would allow measurement of the coupling 
strength and phase quickly. We should he able then identify trou- 
ble spots and analytically calculate settings for the skew quadrupole 
correction elements. 
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